Materials, Synthesis

Nanoparticle Salad: A general route to Metal Oxide Nanoparticles using Green Chemistry

“Green Nanochemistry: Metal Oxide Nanoparticles and Porous Thin Films from Bare Metal Powders” Engelbert Redel, Srebri Petrov, Ömer Dag , Jonathon Moir, Chen Huai, Peter Mirtchev, and Geoffrey A. Ozin, Small2011DOI: 10.1002/smll.201101596

Advocates for green chemistry and nanotechnology have both promised technological solutions to society’s great challenges. Some of the barriers to widespread adoption of nanotechnology have been outlined by Jim Hutchison, and many of these barriers can be addressed by green chemistry. In particular the two issues that the current paper addresses are the excessive waste and the potential hazards associated with the metal precursors.

Continue reading

Materials, Synthesis

Oxygen, Nature’s Oxidant for Nature’s Feedstocks.

“Selective catalytic conversion of biobased carbohydrates to formic acid using molecular oxygen”R. Wolfel, N. Taccardi,  A. Bosmann, P. Wasserscheid, Green Chemistry, 2011, DOI: 10.1039/c1gc15434f

Graphical abstract: Selective catalytic conversion of biobased carbohydrates to formic acid using molecular oxygen

All of us have a very personal relationship to the oxidizing power of oxygen. We use oxygen to turn our food into energy, CO2 and water. There are a number of enzymes and pathways that aid this process, each aiding the reaction of food and oxygen toward the creation of CO2 and water.  Now the key to turning complex biomass into usable small molecules is the ability to control this reaction so that we can extract usable chemical building blocks without ending up back at CO2 and water. As you can see in this video over-oxidation can be a real concern.  This paper demonstrates the use of a polyoxometalate (POM) catalyst to promote the oxidation of biomass to formic acid.

Continue reading

Materials

Do water fleas like the taste of nanoparticles?

“Quantification of Water Solubilized CdSe/ZnS Quantum Dots in Daphnia magna” N. A. Lewinski, H Zhu, H J Jo, D. Pham, R R Kamath, C R Ouyang, C D Vulpe, V L Colvin, and R A Drezek. Environ. Sci. Technol. 2010, 1841-1846. 10.1021/es902728a

“Quantum Dot Weathering Results in Microbial Toxicity” S Mahendra, H Zhu, V L Colvin, P J Alvarez. Environ. Sci. Technol. 2008, 9424-9430. 10.1021/es8023385

Overview of the test subject, technique, and nanoparticles used in these experiments

The goal of green chemistry is to design chemicals and chemical processes which are inherently less toxic. For the emerging discipline of nanoscience, the potential toxicological properties remain largely unknown. That said I would like to discuss two related articles concerning the fate and toxicity of nanoparticles (NPs) in the aquatic environment. I like this set of articles because they are both simple, and yet give a hint of the complexities involved with understanding NP fate and toxicity. The more recent, examines the interaction between CdSe/ZnS NPs with Daphnia (a model species for aquatic toxicity). And the original article that drew my attention to this work concerned the same NP and studies the effect that chemical degradation has on NP toxicity. Continue reading