Engineering, Materials

The design hierarchy

The problem of toxic substances has roots that can be traced back through the organizational levels of industrial systems: from the design and manufacture of products to the design and manufacture of the materials from which products are fashioned, and ultimately to the level of chemical production and molecular design. The results of design and engineering decisions at each level are taken up as finished products for use in ‘higher’ levels of design and engineering. Product design rarely involves creating new materials or synthesizing new chemicals; rather, it most commonly involves selecting among available existing materials. Those materials, in turn, are made of chemical ingredients selected from already-available options. To a large extent, the entire chemistry-based system of production is shaped by the available transformations of mineral and petrochemical resources.

This view highlights a multi-level hierarchy in the way things are made—we might call it a design hierarchy, illustrated here with the example of a hypothetical PVC-containing building product.

The design hierarchy

We can use the design hierarchy to trace the decisions that have led to the presence of toxic chemicals in products, and to identify opportunities for substitution. This concept is adapted from the ‘nested relationship’ of chemicals, materials, and products that the Lowell Center for Sustainable Production articulated in their Alternatives Assessment Framework. That relationship expressed a hierarchy of inclusion: “products consist of materials and/or chemicals, materials consist of chemicals, and chemicals are constituents of materials or products.” The design hierarchy also expresses the relationships of different actors involved in designing technological artifacts and systems—and these relationships are interesting from the perspective of systems change.

As we follow toxic problems deeper into the design hierarchy, the main actors at each level—the designers, engineers, and manufacturers who make each discrete item what it is—become further and further removed from each other and their respective design goals and knowledge networks. For example, it’s difficult for architects who want to design ‘green’ buildings to influence what goes on in the domains of materials science and chemistry. They lack the resources and technical expertise necessary to delve into issues of the molecular composition of products, and they can’t easily modify products to make them less toxic.

Designers could try to select safer products, by asking what alternatives are available and how these compare in terms of environmental health impacts. But answering such questions is a challenge in itself. There are structural and organizational barriers to information flow in supply chains, especially across different levels of this hierarchy. For any given item, there may be a complex, globally-distributed network of suppliers; who is responsible for its chemical makeup? For that matter, what is its chemical makeup? Product makers don’t necessarily even know. Concerns about chemical risks upstream in the supply chain are simply not negotiable in markets where detailed knowledge of product chemistry is lacking.

One way to advance a safer material economy is to bring more technical resources to bear on the problem at deeper levels of design. This could be approached in a number of ways:

  • Specialized groups of design professionals could take on the challenge of developing innovative technologies that are inherently benign. At the chemical and material design levels, this corresponds to green chemistry and green engineering. Green product design is even more complex and nebulous.
  • Proponents of clean production can develop green design tools—decision support tools intended to inform and guide users in the technical aspects of eliminating toxic substances. Green design tools have been developed and used at all levels of the design hierarchy: to reduce the environmental health impacts of the synthesis and properties of molecules (e.g., the GreenScreen), to optimize the chemical composition of materials and the manufacture of parts and components (e.g. the Sustainable Apparel Coalition’s Higg Index), and to select safer and less environmentally costly products (e.g. Healthy Building Network’s Pharos Project). Different kinds of expertise, and different design tools, are brought to bear at each level. The idea is that well-informed decisions may, in aggregate, help shift production systems to more sustainable trajectories.
  • Stakeholders can advocate for greater access to knowledge of the chemical constituents of products and materials—in other words, transparency of chemical information—to support informed design choices. This idea has gained considerable traction in the green building space, through projects like the Health Product Declaration open standard. Meanwhile, broader initiatives like the BizNGO Guide to Safer Chemicals and the Chemical Footprint Project aim to help companies address systemic problems of supply-chain chemical management.

These are all valid approaches to the challenge of getting toxic substances out of products and production systems. But they all share some common assumptions: that the key problem to solve is a deficit in the technical abilities or knowledge resources of various kinds of design specialists (chemists, architects, etc.); and that these specialists, if well-equipped, could take on all the responsibility for fixing unsustainable technical systems. Taking a different view, we might see the causes and potential solutions to this ‘wicked’ problem as distributed throughout society, in addition to being submerged in technicalities. That will be the subject of another post…

This post originally appeared on the author’s personal blog and is reposted under a Creative Commons Attribution license.

Environmental Chemistry

BCGC in the news!

logo mashup 2

BCGC students and their work have been making big waves in national media. Check out these great articles and get caught up on what everyone at BCGC is up to these days:

  • Noah Kittner, a SAGE fellow, co-wrote a letter to the editor with his adviser Dan Kammen advising sustainable energy development for economic growth in the Balkan region. The letter was published in The Economist.
  • Post-doc Heather Buckley is both in the news and writing it herself! The Indian start-up she works with to develop cheap and sustainable roofing materials was profiled in Fast Company. Heather wrote about her experience working in India, and the importance of designing safe materials with the global manufacturing workforce in mind, in an essay on

Great work everyone!

Environmental Chemistry

Meet the SAGE Trainees!

The SAGE IGERT Fellowship at BCGC supports UC Berkeley graduate students conducting research related to green chemistry and green energy. The fellowship began in 2013 and now, two years later, there are fifteen trainees and alum doing amazing green work on campus.

We went out to speak to them about their research…and a few other fun things. We asked all the trainees to describe their work in the simplest terms possible: using only the 1,000 most commonly used words in the English language (thanks to the Up-goer text editor). We also asked the students for a recommendation–a bright new green idea in the world that they’re excited about–and got some great responses. So click through the gallery and get to know the BCGC SAGE IGERT trainees!

Engineering, Environmental Chemistry, Materials, Policy

Chemical Footprinting: New tools for tracking green chemistry business practices

Chemical Footprinting: Identifying Hidden Liabilities in Manufacturing Consumer Products

In an unassuming low-rise in the Boston suburbs, Mark Rossi tinkers with a colorful dashboard on his laptop screen while his border collie putters around his feet. Rossi is the founder of BizNGO and Clean Production Action, two nonprofit collaborations of business and environmental groups to promote safer chemicals. He’s also the creator of tools that he hopes will solve a vexing problem—how to get a handle on companies’ overall toxic chemicals usage.

Consider the screen of Rossi’s laptop. Chances are the company that manufactured the product has crunched the numbers on the total amount of carbon, water, and land associated with getting it into the office—from the manufacturing of the electronic components to the packaging and transportation to retail outlets. But the total amount of toxic chemicals that contributed to the screen’s design and production might be a more difficult question to answer….

Read the entire story, by Lindsey Konkel, at


The Future of Coal Passes Through Kosovo: op-ed from UC Berkeley’s Noah Kittner and Daniel Kammen

This op-ed was originally published on the National Geographic energy blog In 2013, the World Bank pledged to stop loan­ing money for new coal energy projects[1], unless no finan­cially fea­si­ble alter­na­tives exist. Pres­i­dent Obama has said the same for the United States, “Today, I’m call­ing for an end of pub­lic financ­ing for new coal plants overseas—unless they deploy car­bon cap­ture tech­nolo­gies, or there’s no other viable way for the poor­est coun­tries to gen­er­ate elec­tric­ity (Pres­i­dent Obama, June 25, 2013)[2],[3].”In Kosovo a pro­posed coal-​​fired power plant has been under dis­cus­sion for over a decade. The prime fun­ders, iron­i­cally, are the World Bank and the U. S. government.
Continue reading
Catalysis, Synthesis

Iron-catalyzed C-H Borylation

“Iron-Catalyzed C-H Borylation of Arenes” Dombray, T.; Werncke, C. G.; Jiang, S.; Grellier, M.; Vendier, L.; Bontemps, S.; Sortais, J-B.; Sabo-Etienne, S.; Darcel, C. J. Am. Chem. Soc. 2015, ASAP. DOI: 10.1021/jacs.5b00895

C-H borylation, itself a green reaction for generating useful borylated compounds, is traditionally catalyzed by Ir and Rh. Much of the work has been conducted by John Hartwig’s group at Berkeley and Mitch Smith’s group at Michigan St. French scientists have now reported an iron-catalyzed version, which complements recent reports with Co complexes and dinuclear transition metal complexes. I especially like that the reported reaction is free of H2 acceptors and utilizes light to activate the catalyst.

Continue reading